A New Approach for Solving Volterra Integral Equations Using the Reproducing Kernel Method
نویسندگان
چکیده
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method,the Gram-Schmidt process is omitted here and satisfactory results are obtained. The analytical solution is represented in the form of series. An iterative method is given to obtain the approximate solution. The convergence analysis is established theoretically. The applicability of the iterative method is demonstrated by testing some various examples.
منابع مشابه
A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملA new reproducing kernel method for solving Volterra integro-dierential equations
This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کامل